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1. Interchanging order of integration: triple integrals

Recall that if a two-dimensional region D was both type I and type II, we could inter-
change the order of integration, but in so doing had to rewrite the inequalities which defined
D appropriately. In a similar way, we can occasionally change the order of integration over
three-dimensional regions E, but because we are working with three-dimensional regions
which are harder to visualize, it is often much more difficult to determine the correct bounds
of integration. Let us consider the region in the previous example, which is relatively easy
to work with, to see how this might work in a simple situation.

Example. In the previous example, we considered the iterated integral∫ 2

0

∫ 1−x/2

0

∫ 3−3x/2−3y

0
dz dy dx,

which represented the volume of a certain tetrahedron. Write down the iterated integrals
obtained by changing the order of integration to dy dx dz, and dx dz dy.

As in the two-dimensional case, we begin by drawing a sketch of the region E which we
are integrating over. In this problem, one description of it is as the set of points satisfying
the inequalities

0 ≤ x ≤ 2, 0 ≤ y ≤ 1− x

2
, 0 ≤ z ≤ 3− 3x

2
− 3y.

Another description which is less dependent on the ordering of the variables is given by the
part of the first octant which is bounded by the plane z = 3 − 3x/2 − 3y, or equivalently
the plane 3x+ 6y + 2z = 6.

If we want to change the order of integration to dy dx dz, we will integrate with respect
to y first. Therefore, we need to determine inequalities which y satisfies, as a function of
x and z. A lower bound for y is clearly given by y ≥ 0, and an upper bound is given by
y ≤ 1−x/2−z/3, because possible values for y are bounded from above by the y-coordinates
of points on the plane given by 3x+ 6y + 2z = 6.

Now we need to determine the bounds on x, which should be in terms of z. To do
so, we project the region E onto the xz plane. In this example, it is fairly easy to see
that the projection is the triangle in the xz plane whose vertices have (x, z) coordinates
(0, 0), (0, 3), (2, 0). Therefore, this triangle is bounded by the lines x = 0, z = 0, z = 3−3x/2.
Therefore, x satisfies the inequalities 0 ≤ x ≤ 2− 2z/3. Finally, z is bounded by 0 ≤ z ≤ 3.
Therefore, if we change the order of integration we obtain the integral∫ 3

0

∫ 2−2z/3

0

∫ 1−x/2−z/3

0
dy dx dz.

One can check that this integral is equal to the original integral in question.
If we want to change the order of integration to dx dz dy, we begin by finding bounds on x

in terms of y, z. Clearly x ≥ 0. An upper bound for x is given by the plane 3x+6y+2z = 6,
or x = 2− 2y − 2z/3. To determine bounds for z in terms of y, we project E onto the yz
plane. We see that this is the triangle with vertices whose (y, z) coordinates are given by
(0, 0), (1, 0), (0, 3). Therefore, 0 ≤ y, and y ≤ 1 − z/3. Finally, bounds for y are given by
0 ≤ y ≤ 1. Then the integral we obtain is∫ 1

0

∫ 1−z/3

0

∫ 2−2y−2z/3

0
dx dz dy.
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In this example we are in the very fortunate situation where the projection of E onto
any of the three coordinate planes (xy, xz, yz) is equal to the intersection of E with those
coordinate planes. However, this need not be the case in general. The next example gives
a simple and natural situation where this is not so, and also provides a nice transition into
our next topic.

Example. Consider the region E satisfying the inequalities
√
x2 + y2 ≤ z ≤ 1. Write down

iterated integrals which equal the triple integral of a function f(x, y, z) over the region E
with order dz dy dx and dx dy dz.

We begin by drawing a sketch of E. The surface z =
√
x2 + y2 is a cone with vertex at

the origin, which gets wider as z increases. Therefore, the region given by
√
x2 + y2 ≤ z ≤ 1

is an inverted cone whose vertex lies at the origin, and whose upper boundary is given by
a disc x2 + y2 ≤ 1, z = 1.

If we want to write an iterated integral with order of integration dz dy dx, we start by
determining bounds on z in terms of x, y. These are basically given to us in this problem,
as
√
x2 + y2 ≤ z ≤ 1. To determine the bounds on y, x, we examine the projection

of E onto the xy plane. In this situation, we see that the projection of E is the disc
x2 + y2 ≤ 1. Therefore, y satisfies the inequalities −

√
1− x2 ≤ y ≤

√
1− x2, while x

satisfies the inequalities −1 ≤ x ≤ 1. Of course, the intersection of E with the xy plane is
just the origin, so in this example the projection of E onto the xy plane is something larger
than the intersection of E with the xy plane. In any case, the iterated integral in question
is ∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 1

√
x2+y2

f(x, y, z)dz dy dx.

If we want an iterated integral with order of integration dx dy dz, we first start by de-
termining what inequality x must satisfy as a function of y, z. The x coordinates of points
in E are evidently bounded by the boundary of the cone, so will be bounded by the func-
tions of x we obtain when we solve for x in x2 + y2 = z2. This yields x = ±

√
z2 − y2, so

−
√
z2 − y2 ≤ x ≤

√
z2 − y2. To determine bounds for y, z, we begin by projecting E onto

the yz plane. In this case, one can see that the projection will be a triangle whose vertices
have coordinates (0, 0), (−1, 1), (1, 1). The inequalities which y satisfies are thus given by
−z ≤ y ≤ z. Finally, 0 ≤ z ≤ 1, so the iterated integral in question is

∫ 1

0

∫ z

−z

∫ √z2−y2
−
√
z2−y2

f(x, y, z) dx dy dz.

Therefore, we see that writing down an iterated integral equal to a triple integral can
be a fairly lengthy and difficult process (and we haven’t even done any integrating yet!).
We first need to determine the inequalities that the first variable we will integrate satisfy,
in terms of the other two remaining variables. This often involves identifying the surfaces
which bound the region E, and then solving for the variable in question in terms of the
other two variables.

We then need to determine the projection of the region E onto the plane spanned by the
remaining two variables. In general this is a very difficult question, and is only solvable in
very special situations. You certainly should not expect to be able to solve this question for
‘arbitrary’ regions E, so if you are asked to write down an iterated integral of a region E then
there must be a way to somewhat easily determine the projection of E onto one of the three
coordinate planes. Once this projection is determined, writing down the bounds for the
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remaining two variables reduces to a two-dimensional question which we have encountered
many times when evaluating double integrals.

2. Cylindrical coordinates

We will now take a look at evaluating triple integrals using coordinate systems different
from rectangular coordinates. This is exactly the analogue of when we studied polar coor-
dinates with double integrals. We begin with cylindrical coordinates, which are very closely
related to polar coordinates.

A point (x, y, z), in rectangular coordinates, has cylindrical coordinates (r, θ, z), if x =
r cos θ, y = r sin θ. That is, we extend polar coordinates to three dimensions by simply
tacking on an additional z coordinate. The reason why these coordinates are called cylin-
drical coordinates is clear if we look at the surfaces determined by equations of the form
r = C, for various constants C. These are cylinders which are centered around the z-axis.

We want a formula which relates an integral over rectangular coordinates to a corre-
sponding integral over cylindrical coordinates. If a region E in (x, y, z) space is given by
cylindrical inequalities 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β(0 ≤ β − α ≤ 2π), z1 ≤ z ≤ z2, then we
have an inequality of integrals

∫∫∫
E

f(x, y, z) dV =
∫ z2

z1

∫ β

α

∫ b

a
f(r cos θ, r sin θ, z)r dr dθ dz.

Notice the similarity of this formula to the formula relating integration over polar coordi-
nates to rectangular coordinates in two dimensions. There is the same factor of r appearing
in the integrand, and we replace each of x, y, z in the integrand with r cos θ, r sin θ, z, re-
spectively.

Of course, a similar formula holds true in the more general case where r might be a
function of θ, z, and θ a function of z.

Cylindrical coordinates are really useful in problems involving not only cylinders, but
any situations where expressions of the form x2 + y2 appear.

Example. Consider the cone described in the last problem – the set of points described by
the inequalities

√
x2 + y2 ≤ z ≤ 1. Write down a triple integral in cylindrical coordinates

which equals the volume of this cone.
Notice that the inequalities on r are given by 0 ≤ r ≤ z ≤ 1, since x2 + y2 = r2. The

inequalities on θ are given by 0 ≤ θ ≤ 2π, since any cross-section of the cone by a plane
z = C is a circle. Finally, z satisfies the inequalities 0 ≤ z ≤ 1. Therefore, the integral we
want to evaluate in cylindrical coordinates is

∫∫∫
E

dV =
∫ 1

0

∫ 2π

0

∫ z

0
r dr dθ dz.

Notice that this integral is much easier to calculate than the various iterated integrals we
found in the previous example:

∫ 1

0

∫ 2π

0

∫ z

0
r dr dθ dz =

∫ 1

0

∫ 2π

0

z2

2
dθ dz = 2π

z2

6

∣∣∣1
0

=
π

3
.

Suppose that this cone is a solid with density given by ρ(x, y, z) = z, and we want to
calculate the mass of the solid. Then we want to evaluate
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∫∫∫
E

z dV =
∫ 1

0

∫ 2π

0

∫ z

0
rz dr dθ dz.

Again, this integral is easy to evaluate (contrast it to the corresponding integral you would
need to evaluate in rectangular coordinates):∫ 1

0

∫ 2π

0

∫ z

0
rz dr dθ dz =

∫ 1

0

∫ 2π

0

z3

2
dθ dz = 2π

z4

8

∣∣∣1
0

=
π

4
.

Or suppose we wanted to evaluate the moment of inertia of the cone with uniform density
ρ(x, y, z) = 1 about the z-axis. Then we would calculate the integral∫∫∫

E

x2 + y2 dV =
∫ 1

0

∫ 2π

0

∫ z

0
r3 dr dθ dz.

One quickly computes the value of this integral to be π/10.


